

# Protein metabolism By Dr. Anwar Almzaiel



### **GOALS**

- -Amino acid pool
- Protein turnover
- Nitrogen Balance
- Digestion of Dietary Proteins
- Removal of Nitrogen from Amino Acids
- **A. Transamination**
- **B. oxidative deamination**
- Transport of ammonia to the liver
- Urea Cycle
- Transport of ammonia in the circulation



**Proteins are degraded into** amino acids. **Protein turnover is tightly** regulated. **First step in protein** degradation is the removal of the nitrogen Ammonium ion is converted to urea in most mammals. Carbon atoms are converted to • precursors of other major metabolic intermediates.

#### Metabolic uses of amino acids

- building blocks for protein synthesis
- precursors of nucleotides and heme
- source of energy
- neurotransmitters

neurotransmitters and hormones



The amino group nitrogen is converted to urea and excreted. -Glucose, fatty acids and ketone bodies can be formed from amino acids.

**Dietary Protein Degradation** 

**Dietary proteins are a vital source of amino acids.** 

Discarded cellular proteins are another

source of amino acids.

Dietary proteins are hydrolyzed to amino acids and absorbed into the bloodstream.



## some major biological functions

*Detoxification of drugs, chemicals and metabolic by-*

products

- \* Excess dietary amino acids(AAs )are neither stored nor
  - excreted. Rather, they are converted to common

*metabolic intermediates444* 

- The requirements of protein for the health: the minimal requirement of protein is 30~50 gram for the adult
- Advice: 80 gram/day? ? ?



Nitrogen balance

# Zero or total nitrogen balance:

the intake = the excretion (adult)

Amount of nitrogen intake is equal to the amount of nitrogen excreted is zero or total nitrogen balance

#### • Positive nitrogen balance:

the intake > the excretion

during pregnancy, infancy, childhood and recovery from severe illness or surgery

#### • Negative nitrogen balance:

the intake < the excretion

following severe trauma, surgery or infections. Prolonged periods of negative balance are dangerous and fatal if the loss of body protein reaches about one-third of the total body protein **CHEMICAL NATURE OF PROTEINS** All proteins are polymers of amino acids. The amino acids in proteins are united through "Peptide" linkage. Sometimes proteins are also called as polypeptides because they contain many peptide bonds.

#### Amino acids (a.a)

-Amino acids are the fundamental units of proteins. -Amino acids are composed of an amino group (-NH2), a carboxyl group (-COOH), a hydrogen atom -Proteins are polymers of amino acids, with each amino acid residue joined to its neighbor by a specific type of covalent bond.

-Proteins can be broken down (hydrolyzed) to their constituent amino acids the free amino acids derived from them.



### **Peptides and polypeptide:** The linkage of a.a together produces peptide chains or polypeptides if many amino acids are linked. The peptide bond is the bond formed between the $\alpha$ carboxyl group of one a.a and the $\alpha$ -amino group of another, H<sub>2</sub>O is removed.

#### Free amino acid



#### B Amino acids combined through peptide linkages

# -NH-CH-CO-NH-CH-CO-R R Side chains determine properties of proteins.



### **Classification of amino acids:**

#### **1. Chemical classification.**

a. According to the chemistry of the side chains.b. According to polarity of side chains.

#### **3. Nutritional classification :**

- Essential
- Non-essential

#### **3. Metabolic classification :**

- Glucogenic,
- Ketogenic
- Both glucogenic and ketogenic





Fig. 4.5: Classification of amino acids.



Classification of amino acids

- non-essential amino acids
  - can be synthesized by an organism
  - usually are prepared from precursors in 1-2 steps
- Essential amino acids \*\*\*
  - cannot be made endogenously
  - must be supplied in diet

eg. Leu, Phe.....

|          | Nonessential | Essential     |
|----------|--------------|---------------|
|          | Alanine      | Arginine*     |
| <b>O</b> | Asparagine   | Histidine *   |
|          | Aspartate    | Valine        |
|          | Cysteine     | Lysine        |
|          | Glutamate    | Isoleucine    |
|          | Glutamine    | Leucine       |
|          | Glycine      | Phenylalanine |
|          | Proline      | Methionine    |
|          | Serine       | Threonine     |
|          | Tyrosine     | Tyrptophan    |

\*The amino acids Arg, His are considered "conditionally essential" for reasons not directly related to lack of synthesis and they are essential for growth only

#### Essential and nonessential amino acids

| Essential     | Nonessential |
|---------------|--------------|
| Arginine      | Alanine      |
| Histidine     | Aspartate    |
| Isoleucine    | Asparagine   |
| Leucine       | Cysteine     |
| Lysine        | Glutamate    |
| Methionine    | Glutamine    |
| Phenylalanine | Glycine      |
| Threonine     | Proline      |
| Trptophan     | Serine       |
| Valine        | Tyrosine     |

#### Glucogenic and ketogenic amino acids

| Glu        | ıcogenic   | Both Glucogenic and<br>ketogenic | ketogenic |
|------------|------------|----------------------------------|-----------|
| Alanine    | Arginine   | Isoleucine                       | Leucine   |
| Asparagine | Aspartate  | Phenylalanine                    | Lysine    |
| Cysteine   | Glutamate  | Trptophan                        |           |
| Glutamine  | Glycine    | Tyrosine                         |           |
| Histidine  | Methionine |                                  |           |
| Proline    | Serine     |                                  |           |
| Threonine  | Valine     |                                  |           |



#### **Amino acids Abbreviations**

| Amino acid    | 3-letter<br>abbreviation | 1-letter<br>abbreviation |
|---------------|--------------------------|--------------------------|
| Alanine       | Ala                      | Α                        |
| Arginine      | Arg                      | R                        |
| Asparagine    | Asn                      | N                        |
| Aspartic acid | Asp                      | D                        |
| Cysteine      | Cys                      | С                        |
| Glutamic acid | Glu                      | E                        |
| Glutamine     | Gln                      | Q                        |
| Glycine       | Gly                      | G                        |
| Histidine     | His                      | Н                        |
| Isoleucine    | lle                      | I                        |
| Leucine       | Leu                      | L                        |
| Lysine        | Lys                      | К                        |
| Methionine    | Met                      | м                        |
| Phenylalanine | Phe                      | F                        |
| Proline       | Pro                      | Р                        |
| Serine        | Ser                      | S                        |
| Threonine     | Thr                      | Т                        |
| Tryptophan    | Trp                      | w                        |
| Tyrosine      | Tyr                      | Y                        |
| Valine        | Val                      | V                        |



Overview of amino acid metabolism



*Protein catabolism Digestive Tract of protein* 

- Proteins are generally too large to be absorbed by the intestine and therefore must be hydrolyzed to the amino acids
- The proteolytic enzymes responsible for hydrolysis are produced by three different organs: the stomach pancreas and small intestine (the major organ)



Stomach

- HCI (parietal cells ) and Pepsinogen (chief cells )
- The pH of gastric juice is around 1.0. Food is retained in the stomach for 2-4 hrs
- HCI kills microorganisms, denatures proteins, and provides an acid environment for the action of pepsin
- Autocatalysis: pepsinogen is converted to active pepsin(*Pepsin A*) by HCI
- Pepsin coagulates milk in presence of Ca<sup>2+</sup> ions



# Pancreas and small intestine

Endopeptidase (pancreas)
 Trypsin: carbonyl of arg and lys
 Chymotrypsin: carbonyl of Trp, Tyr, Phe, Met, Leu
 Elastase: carbonyl of Ala, Gly, Ser

- Exopeptidase (pancreas)
  Carboxypeptidase A:amine side of Ala, Ile, Leu, Val Carboxypeptidase B: amine side of Arg, lys
- Aminopeptidase (small intestine): cleaves N-terminal residue of oligopeptidaes
   Dipeptidase (small intestine)





absorption

- There is little absorption from the stomach apart from short- and medium- chain fatty acids and ethanol
- Under normal circumstances, the dietary proteins are almost completely digested to their constituent amino acids, and these end products of protein digestion are rapidly absorbed from the intestine into the portal blood



- Amino acids are transported through the brush border by the carrier protein and it is an active transport
- The classification of carrier protein: aciditic; basic; neutral and gly-carrier
- 2. γ-glutamyl cycle
- 3. The bi-and tri- peptidase carrier system in the intestinal mucosa cell



## The mechanism of AA's absorption



intestine





#### Source of ammonia

# **A**. some amino acids are degraded by the in the intestine bacteria





## 2. Ammonia

# **B.** urea from the blood to the intestine with resultant increased diffusion of $NH_3$ into the intestinal





## Protein and amino acid turnover





Overview of the protein metabolism





introduction

- Free amino acids are metabolized in identical ways, regardless of whether they are released from dietary or intracellular proteins
- The metabolism of the resulting amino group and nitrogen excretion are a central part of nitrogen metabolism



# DEAMINATION

**A. Transamination** 

**B.** Oxidative deamination

C. purine nucleotide cycle

# **A.** Transamination

- Transamination by Aminotransferase (transaminase)
- always involve PLP coenzyme (pyridoxal phosphate)
- reaction goes via a Schiff's base intermediate
- all transaminase reactions are reversible



Aminotransferases

- Aminotransferases can have specificity for the alpha-keto acid or the amino acid
- Aminotransferases exist for all amino acids except proline and lysine
- The most common compounds involved as a donor/acceptor pair in transamination reactions are glutamate and a-ketoglutarate, which participate in reactions with many different aminotransferases

to an alpha-keto acid  $\rightarrow$  alpha-amino acid



-The most important transaminases identified are glutamate-oxaloacetate transaminase (GOT) glutamate- pyruvate transaminase (GPT).

One of the thousands kinds of liver enzymes, and a kind of transferase

Large amount of transaminase is released into blood mostly on liver cell damages. Thus, detection of serum level tells the existence of

liver cell damage.





**B.** Oxidative Deamination

L-glutamate dehydrogenase (in mitochondria)

Glu + NAD<sup>+</sup> (or NADP<sup>+</sup>) +  $H_2O \Leftrightarrow NH_4^+$  + a-ketoglutarate + NAD(P)H +H<sup>+</sup>

Requires NAD<sup>+</sup> or NADP <sup>+</sup> as a cofactor

Plays a central role in AA metabolism ?



It is inhibited by GTP and ATP, and activated by GDP and ADP



#### **Glutamate Dehydrogenase**

This enzyme is found in many tissues, where it catalyzes the reversible oxidative deamination of the amino acid glutamate. It produces the citric acid cycle intermediate  $\alpha$ -ketoglutarate, which serves as an entry point to the cycle for a group of glucogenic amino acids. Its role in urea synthesis and nitrogen removal is still controversial, but has been included in Figure I-17-1.





The metabolism of  $\alpha$ -ketoacid

 Biosynthesis of nonessential amino acids

# TCA cycle member + amino acid $\rightarrow \alpha$ -keto acid + nonessential amino acid

- A source of energy (10%)
  (CO<sub>2</sub>+H<sub>2</sub>O)
- Glucogenesis and ketogenesis



\* Classification of amino acids

- \* glucogenic amino acid : are converted into either pyruvate or one of the citric acid cycle intermediates (a-ketoglutarate, succinyl CoA, fumarate or malate)
- ketogenic amino acid: will be deaminated via Acetylc-CoA and thus can be made into a ketone body. such as: Leucine and lysine
- \* glucogenic and ketogenic amino acid: isoleucine, phenylalanine, tryptophan and tyrosine, threonine



Degradation of amino acids

- Amino acid breakdown can yield:
  - Acetyl-CoA
  - -α-KG(alpha keto glutarate
  - Succinyl-CoA
  - OAA(oxalacetate)
  - fumarate

# α-KG is generated from five amino acids

- Proline
- Glutamate
- Glutamine
- Arginine
- Histidine



## Four amino acids are converted to Succinyl-CoA

- Methionine
  - Converted to homocysteine through methyl group transfer, generates cysteine as converted to  $\alpha$ -ketobutyrate
- Isoleucine
  - Transamination, oxidative decarboxylation to acetyl-CoA and propionyl CoA
- Valine
  - Transamination, decarboxylation to propionyl CoA
- Threonine
  - $\alpha$ -ketobutyrate generated and converted to propionyl CoA

#### NH<sub>2</sub> CH<sub>3</sub>-S-CH<sub>2</sub>-CH<sub>2</sub>-ĊH-COO Methionine **Propionyl-CoA is** 3 steps a common intermediat $NH_3$ for amino acids $\rightarrow$ HS-CH2-CH2-CH2-CH-COO Homocysteine succinyl-CoA PLP cystathionine Serine $\beta$ -synthase PLP cystathionine >> Cysteine $\gamma$ -lyase OH NH<sub>3</sub> threonine dehydratase CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>3</sub>-CH--CH-COO PLP $\alpha$ -Ketobutyrate Threonine $NH_4^+$ $H_2O$ CoA-SH CH<sub>3</sub> NH<sub>3</sub> $NAD^+$ α-keto acid CH<sub>3</sub>-CH<sub>2</sub>-CH-CH-COO dehydrogenase $\rightarrow$ NADH + H<sup>+</sup> $CO_2$ Isoleucine $\rightarrow CO_2$ 6 steps CH<sub>3</sub> NH<sub>3</sub> $CO_2$ $7\,\mathrm{steps}$ CH<sub>3</sub>-CH-CH-COO $CH_3 -$ -CH 0 Propionyl-CoA Valine CH<sub>3</sub>-C-S-CoA 2 steps - HCO<sub>3</sub> Acetyl-CoA CH<sub>3</sub> O -00C· S-CoA Methylmalonyl-CoA methylmalonylcoenzyme B<sub>12</sub> CoA mutase OOC-CH2-CH S-CoA Succinyl-CoA

## Branched-chain α-keto acid dehydrogenase complex

- In certain body tissues, this enzyme catalyzes the oxidative decarboxylation of valine, isoleucine, and leucine yielding  $CO_2$ , and acyl-CoA derivatives.
- Shares ancestry with pyruvate dehydrogenase complex,  $\alpha$ -KG dehydrogenase complex another example of gene duplication

### **Branched-chain** ... complex



#### Asparagine and aspartate are degraded to OAA



# Fate of metabolites derived from amino acids

• In addition to feeding the citric acid cycle, amino acids can result in ketone bodies, while others are gluconeogenic

## **Ketone bodies**

 The six amino acids that are degraded to acetoacetyl-CoA and/or acetyl-CoA) can be converted to acetoacetate and β-hydroxybutyrate



## Glucogenic amino acids

 Amino acids that are degraded to pyruvate, α-KG, succinyl-CoA fumarate, and/or OAA can be converted to glucose

| by Site of Entry                                 |                                                     |  |  |
|--------------------------------------------------|-----------------------------------------------------|--|--|
| Pyruvate                                         | Succinyl-CoA                                        |  |  |
| Alanine                                          | Isoleucine <sup>†</sup>                             |  |  |
| Cysteine                                         | Methionine                                          |  |  |
| Glycine                                          | Threonine                                           |  |  |
| Serine                                           | Valine                                              |  |  |
| Tryptophan <sup>†</sup>                          | Fumarate                                            |  |  |
| α- <b>Ketoglutarate</b><br>Arginine<br>Glutamate | Phenylalanine <sup>†</sup><br>Tyrosine <sup>†</sup> |  |  |
| Glutamine                                        | <b>Oxaloacetate</b>                                 |  |  |
| Histidine                                        | Asparagine                                          |  |  |
| Proline                                          | Aspartate                                           |  |  |
| Arginine                                         | Phenylalani                                         |  |  |
| Glutamate                                        | Tyrosine <sup>†</sup>                               |  |  |
| Glutamine                                        | <b>Oxaloacetat</b>                                  |  |  |
| Histidine                                        | Asparagine                                          |  |  |
| Proline                                          | Aspartate                                           |  |  |

Clucogenic Amino Acids Grouped

\*These amino acids are precursors of blood glucose or liver glycogen because they can be converted to pyruvate or citric acid cycle intermediates. Only leucine and lysine are unable to furnish carbon for net glucose synthesis.

<sup>†</sup>These amino acids are also ketogenic (see Fig. 18–19).





1. amino acids degradation

RCCO,H,NH2

МАО

 $RCHO+NH_3$ 

Monoamine oxidase

2. glutamine (glutaminase, kidney)

3. catabolism from bacteria in intestine (two)

4. purine and pyrimidine catabolism



- Fix ammonia onto glutamate to form glutamine(Gln) and use as a transport mechanism
- Transport ammonia by alanine-glucose cycle and Gln regeneration
- Excrete nitrogenous waste through urea cycle
- Transport of ammonia
- alaninie glucose cycle \*
- regenerate Gln





L-Glutamate



# \*\*\*\* Urea synthesis

- Synthesis in liver (Mitochondria and cytosol)
- Excretion via kidney
- To convert ammonia to urea for final excretion











Figure I-17-2. The Urea Cycle in the Liver



UREA CYCLE (liver)

1. Overall Reaction:

NH<sub>3</sub> + HCO<sub>3</sub><sup>-</sup> + aspartate + 3 ATP + H<sub>2</sub>O → urea + fumarate + 2 ADP + 2 Pi + AMP + ppi

2. Requires 5 enzymes:

2 from mitochondria and 3 from cytosol



Regulation of urea cycle

### 1.Mitochondrial carbamoyl phosphate synthetase I (CPS I)

CPS I catalyzes the first committed step of the urea cycle CPS I is also an allosteric enzyme sensitive to activation by *N*-acetylglutamate (AGA) which is derived from glutamate and acetyl-CoA





# Increased rate of AA degradation requires higher rate of urea synthesis $\uparrow$ AA degradation $\rightarrow$ $\uparrow$ glutamate concentration $\rightarrow$ $\uparrow$ synthesis of Nacetylglutamate $\rightarrow$ $\uparrow$ CPS I activity $\rightarrow$ $\uparrow$ urea

cycle efficiency



# 2. All other urea cycle enzymes are controlled by the concentrations of their substrates

Deficiency in an  $E \rightarrow \uparrow$  (substrate)  $\rightarrow \uparrow$  rate of the deficient E

3. The intake of the protein in food

the intake  $\uparrow \rightarrow \uparrow$  urea synthesis



Hyper-ammonemia

# and the toxic of the ammonia

**GDH** 

#### Why is ammonia toxic?

 $\alpha$ -ketoglutarate + NH3 + NADPH  $\leftrightarrow$  glutamate + NADP+

High ammonia depletes the TCA cycle of  $\alpha$ -ketoglutarate  $\rightarrow$  low ATP  $\rightarrow$  COMA (a symptom of high ammonia levels).

- Hyperammononemia: ammonia intoxication tremors, slurring of speech, and blurring of vision, coma/death
- Cause by cirrhosis of the liver or genetic deficiencies



#### Table I-17-1. Genetic Deficiencies of Urea Synthesis

| Carbamoyl Phosphate Synthetase            | Ornithine Transcarbamoylase           |
|-------------------------------------------|---------------------------------------|
| ↑ [NH4 <sup>+</sup> ]; hyperammonemia     | ↑ [NH <sub>4</sub> +]; hyperammonemia |
| Blood glutamine is increased              | Blood glutamine is increased          |
| BUN is decreased                          | BUN is decreased                      |
| No orotic aciduria<br>Autosomal recessive | Orotic aciduria<br>X-linked recessive |
| Cerebral edema                            | Cerebral edema                        |
| Lethargy, convulsions, coma, death        | Lethargy, convulsions, coma, death    |



Figure I-17-3. Genetic Deficiencies of Amino Acid Metabolism