Selective Bagonists

د.اسماء الثويني

Asist.Prof./M.B.Ch.B/M.S.C/P.h.D Pharmacology and therapeutics

Dobutamine

•

Synthetic catecholamine

•

•It increases cardiac output with little change in heart rate (does not significantly elevate oxygen demands of the myocardium).

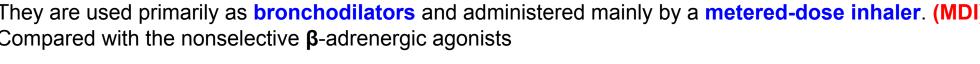
•

•It is used i.v.

•t_{1/2} is about **2 minutes**.

•

•Therapeutic uses:


- In cardiogenic shock with IHD (if there is renal shutdown, dopamine is preferred)
- •Adverse effects:
- •Arrhythmias (↑ A-V conduction). Other adverse effects are less than adrenaline.

Selective 3, agonists

Salbutamol (Albuterol in USA), Terbutaline and Levosalbutamol (new)

Short-acting β , agonists (SABA)

They are used primarily as **bronchodilators** and administered mainly by a **metered-dose inhaler**. (MDI) Compared with the nonselective β -adrenergic agonists

these drugs produce equivalent bronchodilatation with less cardiac stimulation.

Salbutamol

(the most widely used drug) is well absorbed & mainly excreted unchanged, plasma $t_{1/2} = 4 \text{ h}$. It is most widely used for :

- •Treatment of asthma, given by nebulizers (in the treatment of acute attacks), metered-dose inhaler or orally.
- •Premature labor (produce relaxation of uterine smooth muscles), given orally or parenterally.
- •Treatment of **hyperkalaemia** (nebulizer)

Terbutaline use is similar to salbutamol but it is poorly absorbed orally.

•Unwanted effects :

- **Tachycardia**
- **Dysrhythmias**
- **Tremor**
- hypokalemia
- Levosalbutamol (levoalbuterol) produced less cardiac stimulation

Salmeterol and Formoterol (Eformoterol)

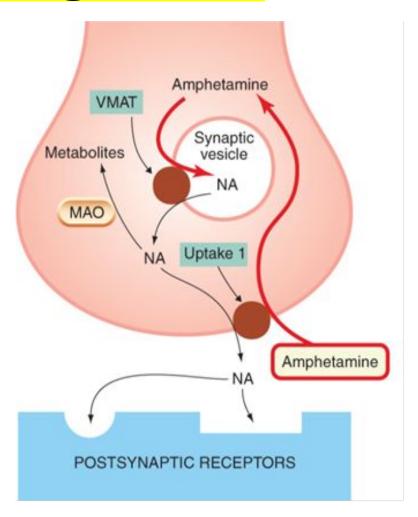
Long-acting β_2 agonists (LABA)

Single dose by an inhaler, provides sustained bronchodilatation over 12 hours, compared with less than 3 hours for SABA. Formoterol and salmeterol has delayed onset of action.

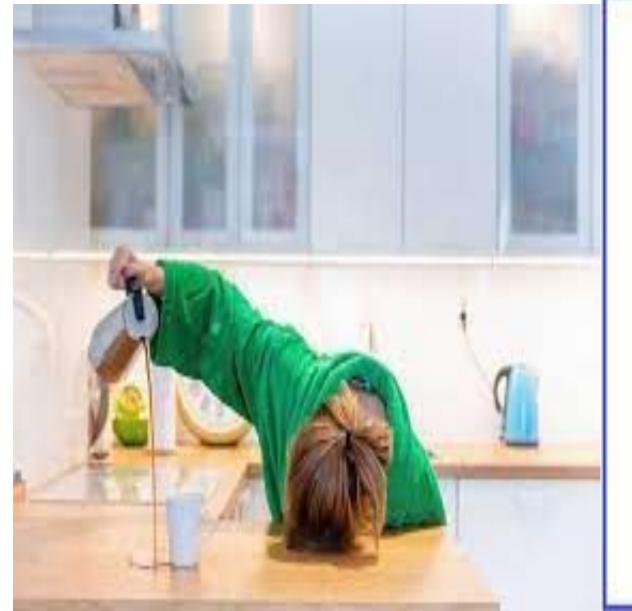
Both agents are **used** by inhalation (MDI) for controlling **asthma** symptoms (not used in acute attacks). These agents are highly effective when **combined with inhaled corticosteroids** (ICS).

S.E. similar to those of SABA.

Other Selective β_2 agonists:


Ritodrine

Used mainly to **delay parturition (labour)**, poorly absorbed by mouth; given i.v. (rarely used)


ISOXSUPTINE is orally taken

Indirect Acting Adrenergic Agonists

- •cause NA release from presynaptic terminals or inhibit its uptake.
- •Amphetamine
- CNS stimulant drug of high abuse potential
- •block NA uptake and cause cellular release of stored NA.
- •Centrally it increase alertness, decrease fatigue and depress appetite, also cause insomnia and produce euphoria.
- Peripherally it increase BP significantly

- •Therapeutic uses:
- Used as CNS stimulant in narcolepsy
- Also used in attention deficit hyperactive children
- Appetite suppressant
- •Well absorbed orally, penetrates freely into brain, excreted unchanged in urine, plasma $t_{1/2} = 12$ hours, depending on urine flow and pH (Acidification of urine significantly increases its elimination since it is weak base)
- •S.E.: Hypertension, tachycardia, insomnia, acute psychosis with overdose, dependence, teratogenic effects.
- Mostly abused by: athletes, drivers (over night) and medical students.
- •Methylphenidate, methamphetamine and MDMA (methylenedeoxymethamphitamine) are similar agents.
- Cocaine
- CNS stimulant drug (from coca leaves) of high abuse potential
- block NA uptake in noradrenergic neurons.
- Like amphetamines, it can increase BP
- •Rarely used local anesthetic and it is major drug of abuse, well absorbed orally or intranasally
- •S.E.: Hypertension, excitement, convulsions, dependence

•Tyramine

- Normal byproduct of tyrosine metabolism not a clinically useful drug
- •important because it is found in **fermented foods**, such as **yoghurt**, **cheese** and **wine**.
- •Tyramine can enter the nerve terminal and displace stored NA.
- •Normally, tyramine is **oxidized by MAO in the GIT**, but if the patient is taking **MAO inhibitors**, it can precipitate serious vasopressor episodes (**hypertensive crisis**)
- Tyramine rich foods are contraindicated with MAO inhibitors.

Mixed-Action Adrenergic Agonists

induce the release of NA and activate adrenergic receptors

•Ephedrine and Pseudoephedrine

- •Release stored NA from nerve endings and directly stimulate both α and β receptors. (non-selective) Thus, they produce a wide variety of adrenergic actions.
- Not metabolized by COMT and MAO; thus, these drugs have a long duration of action.
- •They have excellent absorption orally and penetrate into the CNS; however, pseudoephedrine has fewer CNS effects.

- Therapeutic uses of ephedrine:
- Chronic treatment asthma
- Cold-preparations
- Nasal decongestant (systemic use)
- To raise blood pressure.
- •S.E.: Hypertension, tachycardia, insomnia, dependence.

•

Pseudoephedrine is primarily used to treat nasal and sinus congestion or congestion of the eustachian tubes. It is preferred than ephedrine because of less CNS effects.

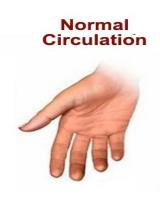
ADRENERGIC ANTAGONISTS

(Adrenergic blockers or sympatholytic agents)

•α-Adrenergic Blocking Agents (α-blockers):

- •Drugs profoundly affect BP. decrease peripheral vascular resistance. This induces a reflex tachycardia.
- •Non-selective α-blockers:

Phenoxybenzamine


•nonselective, bind covalently to both α_1 and α_2 adrenoceptors. The block is irreversible. Therefore, the actions of phenoxybenzamine last about 24 hours after a single administration.

•Effects:

- α_1 block will decrease peripheral resistance and provokes a reflex tachycardia. α_2 block will result in more NA release, which stimulates β -receptors on the heart to increase HR & COP $(\bar{\alpha}$ -receptors are blocked).

Therapeutic uses:

- in the treatment of **pheochromocytoma**.
- Raynaud's disease.

•Adverse effects:

- postural hypotension
- nasal congestion.
- inhibition of ejaculation (impotence).
- flushing

Phentolamine

reflex tachycardia (mediated by the baroreceptor reflex)

Raynaud's Phenomenon

White due to lack of blood flow

Blue due to lack of oxygen

Red when blood flow returns

•reversible competitive block of α_1 and α_2 adrenoceptors. Duration of action lasts for approximately 4 hours.

•It used for the **short-term management of pheochromocytoma**. (it is rarely used now)

- •Selective α₁- blockers :
- •
- •Prazosin, Terazosin, Doxazosin, Alfuzosin, and Tamsulosin
- •selective competitive blockers of the α_1 receptors.
- •They decrease peripheral vascular resistance and lower arterial BP (Tamsulosin has the least effect on BP).
- •
- Doxazosin is the longest acting of these drugs.
- •Therapeutic uses:
- •
- hypertension (mostly: Prazosin, Terazosin, Doxazosin)
- •The first dose produces an exaggerated orthostatic hypotensive response that can result in syncope (first-dose effect) minimized by adjusting the first dose to one-third or one-fourth of the normal dose and by giving the drug at bedtime.
- •
- benign prostatic hypertrophy (also known as benign prostatic hyperplasia or BPH). (mostly: Tamsulosin and Alfuzosin)

- •They are used alternative to surgery in patients with symptomatic BPH.
- •Tamsulosin is a more potent inhibitor of the α_{1A}-receptors found on the smooth muscle of the prostate. This selectivity accounts for tamsulosin's minimal effect on blood pressure.

•Adverse effects:

- dizziness, headache, drowsiness
- nasal congestion
- orthostatic hypotension
- male sexual function is not severely affected
- •Selective α_2 blockers :
- Yohimbine
- •It is found as a component of the **yohimbe tree** and is sometimes used as a sexual stimulant (aphrodisiac).
- •Yohimbine works at the level of the CNS to increase sympathetic outflow to the periphery.
- •Adverse effects:
- Excitement
- Hypertension

