Adrenergic System

د.اسماء الثويني

Asist.Prof./M.B.Ch.B/M.S.C/P.h.D Pharmacology and therapeutics

NORADRENERGIC TRANSMISSION

(Adrenergic System)

THE NORADRENERGIC NEURON

Responsible for synthesis, storage and release of NA and located in:

- ANS (postganglionic sympathetic neurons)
- CNS

Noradrenaline synthesis:

- DOPA = dihydroxyphenylalanine
- Adrenaline is synthesized in the adrenal medulla

Noradrenaline storage:

Stored in vesicles in nerve terminals or chromaffin cells (only a little is free in the cytoplasm) with ATP.

High concentration in the vesicles is maintained by the vesicular

monoamine transporter, Reserpine block this transport Noradrenaline release:

•Release can be **blocked** by (**Bretylium**), other drug is **Guanithidin** has Bretylium like effect and Reserpine like effect. While release can be **stimulated** by indirect sympathomimetic agents like **Amphetamine** and **Tyramine**.

•

- Regulation of noradrenaline release :
- •1- By acting on presynaptic receptors (α_2 -adrenoceptors), released **NA** exerts a local inhibitory effect on the terminals from which it came(autoinhibitory feedback).

•

- •2- Uptake of catecholamine : (80% of termination of action)
- The action of released NA is terminated mainly by reuptake

•

A. Uptake 1:

- Neuronal uptake (by noradrenergic nerve terminals)
- Represent 75 % of uptake
- terminate the action of the transmitter, and to recycle it.

A. uptake 2:

- Extraneuronal uptake (By other cells near the nerve terminal)
- Represent 25 % of uptake
- Limit transmitter spread.

•

•Some drugs inhibit noradrenaline uptake e.g. *Tricyclic Antidepressant* and *Cocaine*

- •Endogenous and exogenous catecholamines are metabolized mainly by two enzymes: monoamine oxidase (MAO) and catechol-O-methyl transferase (COMT).
- •MAO is intracellular, (membrane of mitochondria).
- •It is abundant in noradrenergic nerve terminals, also present in liver and intestinal epithelium.
- •MAO converts catecholamines to aldehydes
- •MAO can also oxidize other monoamines, important ones being dopamine and 5-HT.
- •COMT cause methylation of one of the catechol hydroxyl groups to give a methoxy derivative.
- •COMT is absent from noradrenergic neurons but present postsynaptically, and in adrenal medulla, liver and GIT.
- •The final product of MAO and COMT is vanilly mandelic acid (VMA) and excreted in urine in this form.
- •In patients with *pheochromocytoma*, the urinary excretion of *VMA* is markedly increased.

ADRENOCEPTORS

- Classification of adrenoceptors:
- •Main pharmacological classification into α and β types.

Adrenoceptor subtypes: (G-protein-coupled receptors).

- two main α-receptor subtypes, α, and α, each divided into further subtypes (α, 1B, 1B,)
 three β-adrenoceptor subtypes (β, β, β, β)

•Second messengers:

- α₁-receptors (G
 _q) activate phospholipase C, producing IP₃ and DAG as second messengers
 α₂-receptors inhibit adenylate cyclase, decreasing cAMP formation (G
 _i)
 all types of β-receptor stimulate adenylate cyclase (G
 _s) and increase intracellular cAMP

The main effects of adrenoceptors activation A, adrenaline; ISO, isoproterenol; NA, noradrenaline.

Tissues and effects	α_1	α_2	β1	β_2	βз
SMOOTH MUSCLE					
Blood vessels	Constrict	Constrict/dilate		Dilate	-
Bronchi	Constrict			Dilate	-:
Gastrointestinal tract	Relax	Relax (presynaptic effect)		Relax	1-0
Gastrointestinal sphincters	Contract	_	-	=	-
Uterus	Contract	=	-	Relax	
Bladder detrusor		=		Relax	Relax
Bladder sphincter	Contract	-		-	
Seminal tract	Contract	-	_	Relax	
Iris (radial muscle)	Contract	=			- -
Ciliary muscle		-		Relax	
HEART					
Rate	<u></u>	<u> </u>	Increase	Increase ^a	
Force of contraction	-		Increase	Increase ^a	
OTHER TISSUES/CELLS					
Skeletal muscle		_		Tremor Increased muscle mass and speed of contraction Glycogenolysis	Thermogenesi
Liver (hepatocytes)	Glycogenolysis			Glycogenolysis	
Fat (adipocytes)					Lipolysis Thermogenesi
Pancreatic islets (B cells)		Decrease insulin secretion	1 	-	
Salivary gland	K⁺ release		Amylase secretion		
Platelets		Aggregation		-	-
Mast cells	-	-	-	Inhibition of histamine release	
Brain stem		Inhibits sympathetic outflow		_	
NERVE TERMINALS					
Adrenergic	5-2 20	Decrease release	 20	Increase release	1. Table
Cholinergic	-	Decrease release	_	_	

•Activation of α_1 Adrenoceptors:

•G-protein will activate phospholipase C that will act on PIP₂ membrane phospholipid to produce IP₃ & DAG 2nd messengers. IP₃ will stimulate intracellular Ca⁺⁺ release that cause smooth muscle contraction.

•Activation of α_2 Adrenoceptors:

•G-protein will inhibit adenylate cyclase enzyme (that convert ATP to cAMP 2nd messenger) so decrease the concentration of cAMP that will decrease transmitter release by reducing Ca⁺⁺ influx.

•

•Activation of β Adrenoceptors:

- •G-protein will stimulate adenylate cyclase enzyme so increase the concentration of cAMP that will produce the following effects:
- In the heart cAMP will increase Ca⁺⁺ influx (increase HR (+ve chronotropic effect), automaticity, contractility (+ve inotropic), conductivity (+ve dromotropic), excitability, cardiac output, cardiac work, and O₂ demand, while decrease refractory period)

•

In smooth muscles cause phosphorylation (inactivation) of myosin light chain kinase and produce relaxation.

•

In the Liver cAMP will activate enzymes responsible for Glycogenolysis and Gluconeogenesis.

•

• In adipose tissue cAMP will activate lipase enzyme.

ADRENERGIC AGONISTS (Sympathomimetic drugs)

•CLASSIFICATION

1. according to chemical structure: (Catecholamines & Non-catecholamines)

•Catecholamine:

- •Catecholamines are compounds containing a catechol moiety (a benzene ring with two adjacent hydroxyl groups) and an amine side-chain. Pharmacologically, the most important ones are:
- Noradrenaline
- Adrenaline
- Dopamine
- Isoproterenol (isoprenaline), a synthetic drug
- Dobutamine, synthetic drug, act as selective agonist for β₁ receptors
- 1. according to receptor selectivity:
- Selective α₁ agonists
- Selective α₂ agonists
- Selective β² agonists
- Selective β agonists

according to the mode of action:

•Direct-acting agonists: These drugs act directly on α or β receptors. Examples include adrenaline, noradrenaline, isoproterenol, phenylephrineetc.

•Indirect-acting agonists: These agents may block the uptake of noradrenaline (uptake inhibitors) e.g.: cocaine or are taken up into the presynaptic neuron and cause the release of noradrenaline e.g. amphetamines.

•Mixed-action agonists: Some agonists, such as ephedrine and pseudoephedrine have the capacity both to stimulate adrenoceptors directly and to release noradrenaline from the noradrenergic

neuron

Catecholamines	Non-catecholamines		
High potency	Low potency		
Do not readily penetrate into CNS	Readily penetrate into CNS		
Metabolized by MAO & COMT	Not metabolized by MAO & COMT		
Not given orally (except isoprenaline)	given orally		
Short duration of action	Long duration of action		
Less lipid soluble	High lipid solubility		
e.g. adrenaline, dopamine, isoprenaline	e.g. ephedrine, phenylephrine, amphetamine		

