Summary

During the period from January to March, 2013; a total of 288 clinical specimens were collected from wounds (65), burns (59) and urine (78) for inpatientsin Al-DiwaniyaTeaching Hospital, in addition 86 food samples(milk 30, cheese 30 and meet 26) were obtained from localmarkets.

Seventy two staphylococcal isolates were identified by conventional tests, then confirmed by HiCrom agar and VITEK-2compact system. Results revealed that the predominant species was *S.aureus*, 52(72.2%).

The pattern of antibiotic susceptibility of *S. aureus* isolates to antibiotic Methicillin was determined using disc diffusionmethod; the results revealed that 22(32.3%)of*S. aureus*were methicillin resistant (MRSA) which distributed as 4 (18.9%) from burns; 5 (22.7%); from urine; 10 (45.5%) from wounds; and foods 3 (13.6%).

The extracted DNA of MRSA isolates were subjected to multiplex Polymerase chain reaction (PCR) technique to amplify with primers of coagulase 1(*Coa1*)and Toxic Shock Syndrome Toxin (*TSST*) encoding genes, the results showed that 17 (77.3%)gave to amplicon size 561 base pair(bp)*and* 7(31.8%) gave to amplicon size 387bp;respectively.

The detection of staphylococcal enterotoxigenicity according to three classicalenterotoxins genes which are *SEA*, *SEB* and *SEC* was performed simultaneouslyusingmonoplex PCR assay. A 15 (68.2%) of MRSA isolates found to be enterotoxigenic, eight (36.4%) isolates were carried more than one enterotoxin gene.

I

The SEAgene was the most frequent enterotoxin coding gene among the otherstested genes; SEAaccomplished 63.3% of the detected enterotoxin genes followed by the SECgene, which constituted 40.9%, and then the SEBcoding gene by (31.8%). The results obtained by this study showed that 7 (31.8%) of MRSAisolates harboured only one enterotoxin coding gene, while 2 (9.1%) of the isolatespossessed two toxin genes, and 6 (27.3%) isolates of MRSA contained three genecoding SEA, SEB and SEC genes.

In addition to that, the PCR was used for detection of *Coa-2*gene polymorphism.Results revealed that the amplification of the *Coa-2* gene from 15 MRSA isolates produced nine different groups(CG1-CG9). Four isolates showed only one amplicon, 11 isolates showed more than one amplicon, while the most prevalent *Coa2* type was CG3 (26.7%) the result amplicon, size of CG3 were (400-1200)bp.In conclusion, the *Coa*amplification has been considered as a simple and accurate method for typing of *S. aureus.*

List of Contents

No.	Subject	Page
	Summary	I-II
	List of Content	III
	List of Tables	VII
	List of Figures	VIII
	List of Abbreviations	Х
1	Chapter One: Introduction and	
1	Literatures Review	
1.1	Introduction	1
1.2.1	The Staphylococci	4
1.2.2	Morphology & characteristics of <i>S. aureus</i>	4
1.2.3	Epidemiology of Staphylococcal Infection	5
1.2.4	Pathogenicity	6
1.2.5	HistoryofMethicillin-ResistantStaphylococcus aureus (MRSA)	8
1.2.6	Mechanisms of resistance for methicillin	10
1.2.6.1	Staphylococcalcassettechromosomemecelement (SCCmec)	10
1.2.6.2	Penicillin Binding Proteins (PBPs)	11
1.2.6.3	Induction of PBP2a	12
1.2.7	Virulence Factors	12
1.2.7.1	Capsular polysaccharides	13
1.2.7.2	Extracellular Proteases	14
1.2.7.3	Adherence Factors	14
1.2.7.4	Exofoliative toxins	14
1.2.7.5	Hemolysins&Siderophores	15

1.2.7.6	Coagulase	15
1.2.7.7	Superantigens: enterotoxins & toxic shock syndrome toxin	17
1.2.7.8	Other virulence factors	21
1.2.8	StaphylococcalToxicShockSyndromeToxin Structure	22
1.2.9	Staphylococcal enterotoxin Structure	23
1.2.10	Mechanisms of action of TSST	25
1.2.11	Mechanisms of action of SEs	27
1.2.12	Clinical manifestations	28
1.2.12.1	Skin and soft tissue	28
1.2.12.2	Bacteremia & Endocarditis	29
1.2.12.3	Pneumonia	29
1.2.13	Risk Factors for Community-Acquired(CA) MRSA	30
1.2.14	Laboratory investigations <i>S. aureus</i> and MRSA	31
1.2.15	Therapy of Methicillin-resistant Infection	32
2	ChapterTwo:MaterialsandMethods	
2.1	Materials	35
2.1.1	Specimens	35
2.1.2	Instruments and equipments	35
2.1.3	Biological and Chemical Materials	36
2.1.4	Culture Media	37
2.1.5	Antibiotic discs	37
2.1.6	Diagnostic Kits	38

2.1.7	Polymerase chain reaction materials	38
2.1.7.1	Genomic DNA Purification Materials	38
2.1.7.2	Master Mix	39
2.1.7.3	Molecular Weight DNA Marker	39
2.1.7.4	Virulence factorsprimers	40
2.2	Methods	40
2.2.1	preparation of Reagents	40
2.2.1.1	Catalase Reagent	40
2.2.1.2	Oxidase reagent	40
2.2.1.3	Methyl red reagent	41
2.2.2	Preparation of buffers and solutions	41
2.2.2.1	Normal Saline(0.85%)	41
2.2.2.2	Gel Electrophoresis Solution	41
2.2.2.3	Agarose Gel	42
2.2.2.4	Loading Dye	42
2.2.2.5	Lysozyme (10 mg/ml)	42
2.2.2.6	Ethanol (70%)	42
2.2.3	Preparation of culture media	42
2.2.3.1	Nutrient broth and Mueller-Hinton agar media	42
2.2.3.2	Blood agar medium	43
2.2.3.3	HiCromagar medium	43
2.2.3.4	Brain heart infusion medium	43
2.2.4	Identification of isolates	43
2.2.4.1	Gram's stain	43
2.2.4.2	Haemolysis	44
2.2.4.3	Mannitol salt fermentation	44
2.2.4.4	Biochemical tests	44

2.2.4.2.1	Catalase test	44
2.2.4.2.2	Oxidase production test	44
2.2.4.2.3	Coagulase test (tube coagulase test)	44
2.2.4.2.4	Methyl-red test	45
2.2.5	Preservation of bacterial isolates	45
2.2.5.1	Short- term preservation	45
2.2.5.2	Long -terme preservation	45
2.2.6	Definitive Identification via VITEK – Compact	46
2.2.7	Antibiotics susceptibility test	47
2.2.7.1	AST by discs	47
2.2.7.2	AST via VITEK 2- Compact	48
2.2.8.	Detection <i>Coa1,2, TSST-1, SEA, SEB</i> and <i>SEC</i> genes by PCR	49
2.2.8.1	Genomic DNA extraction	49
2.2.8.2	preparation of primers	50
2.2.8.3	PCR amplication of DNA	51
2.2.8.4	DNA Gel Electrophoresis	52
2.2.9	Statistical Analysis	54
3	Chapter three: Results and Discussion	
3.1	Bacterial Isolation & Identification	55
3.2	Molecular Detection	60
3.2.1	Detection Coagulase (<i>Coa</i>)Gene in MRSA isolates	60
3.2.2	Toxic Shock Syndrome Toxin (TSST) gene	62
3.2.3	<i>S. aureus</i> enterotoxin gene	66
3.2.3.1	S. aureus enterotoxin A gene (SEA)	66
3.2.3.2	S. aureus enterotoxin b gene (SEB)	66

3.2.3.3	S. aureus enterotoxin C gene (SEC)	67
3.2.4	Genotypes of <i>S. aureus</i> based on <i>Coa</i> polymorphism (Coa-2)	72
3.3	Distribution of <i>Coa</i> , <i>TSST</i> and <i>SE</i> (<i>A</i> , <i>B</i> & <i>C</i>) genes in wound, urine, burn and various food isolatesofMRSA	75
	Conclusion and Recommendation	77
	References	78
	Appendices	109-111
	Arabic summary	

List of Tables

NO.	Title	Page
1	Unique features of somecommon Staphylococcal enterotoxins	20
2	Grouping of SEs &SEls based on amino acid sequence comparisons	23
3	Risk Factors for Community-Acquired MRSA	31
4	Instruments and equipments used with their remarks	35
5	Biological and Chemical Material with their marks	36
6	Culture media used with their remarks	37
7	Antibiotic disks used in the present study with their remarks	37
8	Diagnostic Kit with its remark	38
9	Genomic DNA purification materials supplied by	38

	Geneaid.	
10	Accupower PCR PreMix with its remark	39
11	Accupower molecular weight DNA marker	39
12	The Specific Primers and their sequences	40
13	PCR condition for detection <i>Coa</i> (1,2), <i>TSST-1</i> , <i>SEA</i> , <i>SEB</i> and <i>SEC</i>	52
14	Distribution of <i>S. aureus</i> isolates in various samples	55
15	Distribution of MRSA isolates in various samples.	58
16	Comparison between <i>Coa-1</i> geneharbouring and Coagulase production by MRSA	61
17	Distribution of Coa-1 gene and <i>TSST-1</i> gene of MRSAisolates in various samples	63
18	Distribution of MRSA enterotoxin (<i>A</i> , <i>B</i> and <i>C</i>) genes in various samples.	69
19	Genotypes of MRSAbased on Coa-2polymorphism	73

List of Figures

NO.	Title	Page
1	Virulence determinants of <i>Staphylococcus</i> aureus	13
2	<i>S. aureus</i> colonies grown in mannitol salt agar as round, smooth, raised, mucoid and glistening	56
3	Growth <i>S. aureus on</i> HiCrome agar, the colonies appearance are golden yellow	57
4	Ethidium bromide-stained agarose gel of PCR	64

	amplified products of MRSA Coa gene. Lane	
	(M):DNA molecular size marker (100 bplader).	
	Lanes (1-6, 8, 9 &12) show amplified with 561	
	bp gene. Lanes (1, 3, 7, 10 &11) show PCR	
	amplified gene with 387 bp to TSST gene. Lane	
	(13) control. (1.5 % agarose gel , 100 V- 1 hrs.)	
5	Ethidium bromide-stained agarose gel of PCR	66
	amplified products of MRSA SEA gene. Lane	
	(M):DNA molecular size marker (100 bplader).	
	Lanes (1-9) show amplified with 102 bp gene.	
	(1.5 % agarose gel , 100 V- 1 hrs.)	
6	Ethidium bromide-stained agarose gel of PCR	67
	amplified products of MRSA SEB gene. Lane	
	(M):DNA molecular size marker (100 bplader).	
	Lanes (2-8) show amplified with 164 bp gene.	
	(1.5 % agarose gel , 100 V- 1 hrs.)	
7	Ethidium bromide-stained agarose gel of PCR	68
	amplified products of MRSA SEC gene. Lane	
	(M):DNA molecular size marker (100 bplader).	
	Lanes (1, 3, 5, 7, 9 & 10) show amplified with	
	451 bp gene. (1.5 % agarose gel , 100 V- 1 hrs.)	
8	Ethidium bromide-stained agarose gel of PCR	73
	Ampliphication (100-1200) bp of Coa-2 gene	
	Lane (M):DNA molecular marker (100 bp)	
9	Distribution of Coa, TSST and SE (A, B and C)	76
	genes in wounds, urine, burns and various	
	foods isolatesofMRSA	
	1	

List of Abbreviations

Abbreviate	Details
μM	Micro mitter
AST	Antibiotics susceptibility test
Вр	base pair
СА	Community-Acquired
CDC	Centers for Disease Control
CGs	Coagulase groups
Соа	Coagulase
CONS	Coagulase negative staphylococci
COPS	Coagulase positive staphylococci
DD	Disc diffusion
DNA	Deoxyribonucleic acid
EDTA	Ethylene diamine tetra acetic acid
egc	Enterotoxin gene cluster
ET	Exofoliative toxins
F	Forward
FDA	Food and Drug Administration
Fnb	Fibronectin-binding
НА	Healthcare-Associated
lgG	immunoglobulin G
IL-8	Interleukin-8
IS	insertion sequences
kDa	Kilo Dalton
ME	Methicillin disc
MGEs	mobile genetic elements
МНС	Major histocompatibility complex
MRSA	Methicillin-resistant Staphylococcus aureus
MSCRAMMs	Components Recognizing Adhesive Matrix Molecules
MSSA	methicillin sensitive Staphylococcus aureus
NCCLS	National Committee for Clinical Laboratory Standards
ОВ	Oligosaccharide/oligonucleotide binding
ΟΧΑ	Oxacillin
PBP2a or PBP2	penicillin-binding protein 2a
PBPs	Penicillin Binding Proteins
PCR	polymerase chain reaction
PFGE	pulsed field gel electrophoresis
PIA	polysaccharide intercellular adhesion

PNAG	poly-Nacetylglucosamine
Pro	Proline
PTSAgs	pyrogenic toxin superantigens
PVL	Panton-Valentine leukocidin
R	Reveres
S. aureus	Staphylococcus aureus
SAGs	superantigens
SCCmec	Staphylococcal cassette chromosome mec
SE	Staphylococcal enterotoxin
SEA	Staphylococcal Enterotoxin A
SEB	Staphylococcal Enterotoxin B
SEC	Staphylococcal Enterotoxin C
SED	Staphylococcal Enterotoxin D
SEE	Staphylococcal Enterotoxin E
SEG	Staphylococcal Enterotoxin G
SEH	Staphylococcal Enterotoxin H
SEI	Staphylococcal Enterotoxin I
SFP	Staphylococcal food poisoning
SSSS	Staphylococcal scalded skin syndrome
SSTIs	skin and soft tissue infections
TBE	Tris - Borate – EDTA
TCR	T-cell receptors
TSST	Toxic shock syndrome toxin
µg/ml	Microgram per milliliter
μΙ	Micro liter